GABA is dispensable for the formation of junctional GABA receptor clusters in Caenorhabditis elegans.
نویسندگان
چکیده
At GABAergic synapses, GABA receptors form high-density clusters opposite GABA release sites. Whether GABA release per se plays a role in the formation of GABA receptor clusters remains uncertain. To address this question in vivo, we characterized GABA receptor clustering in the nematode Caenorhabditis elegans. In C. elegans, body wall muscles receive excitatory inputs from cholinergic motor neurons and inhibitory inputs from GABAergic neurons. Using immunohistochemistry and green fluorescent protein-tagged proteins, we observed that the muscle GABA receptor UNC-49 is precisely clustered opposite GABA release sites. During development, these clusters appear slightly after the detection of presynaptic vesicles. If motor axons are mislocalized as in unc-5 mutants, GABA receptors cluster opposite ectopic axons at GABA release sites. Together, these data imply that a motor neuron-derived factor is instructing GABA receptor clustering. Presynaptic localization of this clustering activity requires the neuronal kinesin UNC-104, suggesting that release of GABA from synaptic vesicles may represent the clustering signal. However, unc-25 mutants do not synthesize GABA but do cluster postsynaptic GABA receptors indistinguishably from the wild type. Therefore, at GABAergic neuromuscular junctions, GABA receptor clustering requires nerve-muscle interaction but not GABA neurotransmission.
منابع مشابه
Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans.
Synaptic clustering of GABAA receptors is important for the function of inhibitory synapses, influencing synapse strength and, consequently, the balance of excitation and inhibition in the brain. Presynaptic terminals are known to induce GABAA receptor clustering during synaptogenesis, but the mechanisms of cluster formation and maintenance are not known. To study how presynaptic neurons direct...
متن کاملThe composition of the GABA receptor at the Caenorhabditis elegans neuromuscular junction.
1. The unc-49 gene of the nematode Caenorhabditis elegans encodes three gamma-aminobutyric acid type A (GABA(A)) receptor subunits. Two of these, UNC-49B and UNC-49C, are expressed at high abundance and co-localize at the neuromuscular junction. 2. The UNC-49B subunit is sufficient to form a GABA(A) receptor in vitro and in vivo. Furthermore, all loss-of-function unc-49 alleles lack functional ...
متن کاملThe Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor.
Ionotropic GABA receptors generally require the products of three subunit genes. By contrast, the GABA receptor needed for locomotion in Caenorhabditis elegans requires only the unc-49 gene. We cloned unc-49 and demonstrated that it possesses an unusual overlapping gene structure. unc-49 contains a single copy of a GABA receptor N terminus, followed by three tandem copies of a GABA receptor C t...
متن کاملThe GABA nervous system in C. elegans.
GABA neurotransmission requires a specialized set of proteins to synthesize, transport or respond to GABA. This article reviews results from a genetic strategy in the nematode Caenorhabditis elegans designed to identify the genes responsible for these activities. These studies identified mutations in genes encoding five different proteins: the biosynthetic enzyme for GABA, the vesicular GABA tr...
متن کاملSpillover transmission is mediated by the excitatory GABA receptor LGC-35 in C. elegans.
Under most circumstances, GABA activates chloride-selective channels and thereby inhibits neuronal activity. Here, we identify a GABA receptor in the nematode Caenorhabditis elegans that conducts cations and is therefore excitatory. Expression in Xenopus oocytes demonstrates that LGC-35 is a homopentameric cation-selective receptor of the cys-loop family exclusively activated by GABA. Phylogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2003